AtCoder ABC-032 C
Given an array $S$ of length $n$ and an integer $k$.
Find maximum value of $(r-l+1)$ such that $\prod_{i=l}^{r}{S_{i}} \le k$
Constraints click to hide $1\le n \le 10^{5}$
$0\le k \le 10^{9}$
$0\le S_{i} \le 10^{9}$
Bruteforce Solution $O(n^2)$: If any value of $S$ is $0$ then the answer is $n$
We call a segment $[l,r]$ valid if $\prod_{i=l}^{r}{S_{i}} \le k$